Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
iScience ; 26(8): 107329, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520693

RESUMO

Microglia are cells with diverse roles, including the regulation of neuronal excitability. We leveraged Patch-seq to assess the presence and effects of microglia in the local microenvironment of recorded neurons. We first quantified the amounts of microglial transcripts in three Patch-seq datasets of human and mouse neocortical neurons, observing extensive contamination. Variation in microglial contamination was explained foremost by donor identity, particularly in human samples, and additionally by neuronal cell type identity in mice. Gene set enrichment analysis suggests that microglial contamination is reflective of activated microglia, and that these transcriptional signatures are distinct from those captured via single-nucleus RNA-seq. Finally, neurons with greater microglial contamination differed markedly in their electrophysiological characteristics, including lowered input resistances and more depolarized action potential thresholds. Our results generalize beyond Patch-seq to suggest that activated microglia may be widely present across brain slice preparations and contribute to neuron- and donor-related electrophysiological variability in vitro.

2.
Gigascience ; 112022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377463

RESUMO

BACKGROUND: Whole-cell patch-clamp electrophysiology is an essential technique for understanding how single neurons translate their diverse inputs into a functional output. The relative inaccessibility of live human cortical neurons for experimental manipulation has made it difficult to determine the unique features of how human cortical neurons differ from their counterparts in other species. FINDINGS: We present a curated repository of whole-cell patch-clamp recordings from surgically resected human cortical tissue, encompassing 118 neurons from 35 individuals (age range, 21-59 years; 17 male, 18 female). Recorded human cortical neurons derive from layers 2 and 3 (L2&3), deep layer 3 (L3c), or layer 5 (L5) and are annotated with a rich set of subject and experimental metadata. For comparison, we also provide a limited set of comparable recordings from 21-day-old mice (11 cells from 5 mice). All electrophysiological recordings are provided in the Neurodata Without Borders (NWB) format and are available for further analysis via the Distributed Archives for Neurophysiology Data Integration online repository. The associated data conversion code is made publicly available and can help others in converting electrophysiology datasets to the open NWB standard for general reuse. CONCLUSION: These data can be used for novel analyses of biophysical characteristics of human cortical neurons, including in cross-species or cross-lab comparisons or in building computational models of individual human neurons.


Assuntos
Neurônios , Humanos , Masculino , Feminino , Camundongos , Animais , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Técnicas de Patch-Clamp , Neurônios/fisiologia , Eletrofisiologia
3.
Front Neuroinform ; 16: 753770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281717

RESUMO

The application of RNA sequencing has enabled the characterization of genome-wide gene expression in the human brain, including distinct layers of the neocortex. Neuroanatomically, the molecular patterns that underlie the laminar organization of the neocortex can help link structure to circuitry and function. To advance our understanding of cortical architecture, we created LaminaRGeneVis, a web application that displays across-layer cortical gene expression from multiple datasets. These datasets were collected using bulk, single-nucleus, and spatial RNA sequencing methodologies and were normalized to facilitate comparisons between datasets. The online resource performs single- and multi-gene analyses to provide figures and statistics for user-friendly assessment of laminar gene expression patterns in the adult human neocortex. The web application is available at https://ethanhkim.shinyapps.io/laminargenevis/.

4.
PLoS One ; 17(1): e0262717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35073334

RESUMO

High resolution in situ hybridization (ISH) images of the brain capture spatial gene expression at cellular resolution. These spatial profiles are key to understanding brain organization at the molecular level. Previously, manual qualitative scoring and informatics pipelines have been applied to ISH images to determine expression intensity and pattern. To better capture the complex patterns of gene expression in the human cerebral cortex, we applied a machine learning approach. We propose gene re-identification as a contrastive learning task to compute representations of ISH images. We train our model on an ISH dataset of ~1,000 genes obtained from postmortem samples from 42 individuals. This model reaches a gene re-identification rate of 38.3%, a 13x improvement over random chance. We find that the learned embeddings predict expression intensity and pattern. To test generalization, we generated embeddings in a second dataset that assayed the expression of 78 genes in 53 individuals. In this set of images, 60.2% of genes are re-identified, suggesting the model is robust. Importantly, this dataset assayed expression in individuals diagnosed with schizophrenia. Gene and donor-specific embeddings from the model predict schizophrenia diagnosis at levels similar to that reached with demographic information. Mutations in the most discriminative gene, Sodium Voltage-Gated Channel Beta Subunit 4 (SCN4B), may help understand cardiovascular associations with schizophrenia and its treatment. We have publicly released our source code, embeddings, and models to spur further application to spatial transcriptomics. In summary, we propose and evaluate gene re-identification as a machine learning task to represent ISH gene expression images.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Hibridização In Situ/métodos , Redes Neurais de Computação , Transcriptoma , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Estudos de Casos e Controles , Conjuntos de Dados como Assunto , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Adulto Jovem
5.
Front Aging Neurosci ; 13: 690632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305570

RESUMO

Parkinson's disease causes severe motor and cognitive disabilities that result from the progressive loss of dopamine neurons in the substantia nigra. The rs12456492 variant in the RIT2 gene has been repeatedly associated with increased risk for Parkinson's disease. From a transcriptomic perspective, a meta-analysis found that RIT2 gene expression is correlated with pH in the human brain. To assess these pH associations in relation to Parkinson's disease risk, we examined the two datasets that assayed rs12456492, gene expression, and pH in the postmortem human brain. Using the BrainEAC dataset, we replicate the positive correlation between RIT2 gene expression and pH in the human brain (n = 100). Furthermore, we found that the relationship between expression and pH is influenced by rs12456492. When tested across ten brain regions, this interaction is specifically found in the substantia nigra. A similar association was found for the co-localized SYT4 gene. In addition, SYT4 associations are stronger in a combined model with both genes, and the SYT4 interaction appears to be specific to males. In the Genotype-Tissue Expression (GTEx) dataset, the pH associations involving rs12456492 and expression of either SYT4 and RIT2 were not seen. This null finding may be due to the short postmortem intervals of the GTEx tissue samples. In the BrainEAC data, we tested the effect of postmortem interval and only observed the interactions in samples with the longer intervals. These previously unknown associations suggest novel roles for rs12456492, RIT2, and SYT4 in the regulation and response to pH in the substantia nigra.

6.
Front Immunol ; 12: 646259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194426

RESUMO

Porphyromonas gingivalis, a bacterium associated with periodontal disease, is a suspected cause of Alzheimer's disease. This bacterium is reliant on gingipain proteases, which cleave host proteins after arginine and lysine residues. To characterize gingipain susceptibility, we performed enrichment analyses of arginine and lysine proportion proteome-wide. Genes differentially expressed in brain samples with detected P. gingivalis reads were also examined. Genes from these analyses were tested for functional enrichment and specific neuroanatomical expression patterns. Proteins in the SRP-dependent cotranslational protein targeting to membrane pathway were enriched for these residues and previously associated with periodontal and Alzheimer's disease. These ribosomal genes are up-regulated in prefrontal cortex samples with detected P. gingivalis sequences. Other differentially expressed genes have been previously associated with dementia (ITM2B, MAPT, ZNF267, and DHX37). For an anatomical perspective, we characterized the expression of the P. gingivalis associated genes in the mouse and human brain. This analysis highlighted the hypothalamus, cholinergic neurons, and the basal forebrain. Our results suggest markers of neural P. gingivalis infection and link the cholinergic and gingipain hypotheses of Alzheimer's disease.


Assuntos
Neurônios Colinérgicos/metabolismo , Hipotálamo/metabolismo , Porphyromonas gingivalis/patogenicidade , Ribossomos/metabolismo , Doença de Alzheimer/etiologia , Retículo Endoplasmático/metabolismo , Feminino , Regulação da Expressão Gênica , Cisteína Endopeptidases Gingipaínas/fisiologia , Humanos , Masculino , Doenças Periodontais/etiologia
7.
Transl Psychiatry ; 11(1): 8, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33414381

RESUMO

Major depressive disorder (MDD) is the most prevalent psychiatric disorder worldwide and affects individuals of all ages. It causes significant psychosocial impairments and is a major cause of disability. A recent consortium study identified 102 genetic variants and 269 genes associated with depression. To provide targets for future depression research, we prioritized these recently identified genes using expression data. We examined the differential expression of these genes in three studies that profiled gene expression of MDD cases and controls across multiple brain regions. In addition, we integrated anatomical expression information to determine which brain regions and transcriptomic cell types highly express the candidate genes. We highlight 12 of the 269 genes with the most consistent differential expression: MANEA, UBE2M, CKB, ITPR3, SPRY2, SAMD5, TMEM106B, ZC3H7B, LST1, ASXL3, ZNF184 and HSPA1A. The majority of these top genes were found to have sex-specific differential expression. We place greater emphasis on ZNF184 as it is the top gene in a more conservative analysis of the 269. Specifically, the differential expression of ZNF184 was strongest in subcortical regions in males and females. Anatomically, our results suggest the importance of the dorsal lateral geniculate nucleus, cholinergic, monoaminergic and enteric neurons. These findings provide a guide for targeted experiments to advance our understanding of the genetic underpinnings of depression.


Assuntos
Transtorno Depressivo Maior , Estudo de Associação Genômica Ampla , Depressão , Transtorno Depressivo Maior/genética , Feminino , Predisposição Genética para Doença , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas de Membrana , Proteínas do Tecido Nervoso , Transcriptoma , Enzimas de Conjugação de Ubiquitina
8.
JAMA Psychiatry ; 78(1): 47-63, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32857118

RESUMO

IMPORTANCE: Large-scale neuroimaging studies have revealed group differences in cortical thickness across many psychiatric disorders. The underlying neurobiology behind these differences is not well understood. OBJECTIVE: To determine neurobiologic correlates of group differences in cortical thickness between cases and controls in 6 disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia. DESIGN, SETTING, AND PARTICIPANTS: Profiles of group differences in cortical thickness between cases and controls were generated using T1-weighted magnetic resonance images. Similarity between interregional profiles of cell-specific gene expression and those in the group differences in cortical thickness were investigated in each disorder. Next, principal component analysis was used to reveal a shared profile of group difference in thickness across the disorders. Analysis for gene coexpression, clustering, and enrichment for genes associated with these disorders were conducted. Data analysis was conducted between June and December 2019. The analysis included 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA consortium. The numbers of cases and controls in each of the 6 disorders were as follows: ADHD: 1814 and 1602; ASD: 1748 and 1770; BD: 1547 and 3405; MDD: 2658 and 3572; OCD: 2266 and 2007; and schizophrenia: 2688 and 3244. MAIN OUTCOMES AND MEASURES: Interregional profiles of group difference in cortical thickness between cases and controls. RESULTS: A total of 12 721 cases and 15 600 controls, ranging from ages 2 to 89 years, were included in this study. Interregional profiles of group differences in cortical thickness for each of the 6 psychiatric disorders were associated with profiles of gene expression specific to pyramidal (CA1) cells, astrocytes (except for BD), and microglia (except for OCD); collectively, gene-expression profiles of the 3 cell types explain between 25% and 54% of variance in interregional profiles of group differences in cortical thickness. Principal component analysis revealed a shared profile of difference in cortical thickness across the 6 disorders (48% variance explained); interregional profile of this principal component 1 was associated with that of the pyramidal-cell gene expression (explaining 56% of interregional variation). Coexpression analyses of these genes revealed 2 clusters: (1) a prenatal cluster enriched with genes involved in neurodevelopmental (axon guidance) processes and (2) a postnatal cluster enriched with genes involved in synaptic activity and plasticity-related processes. These clusters were enriched with genes associated with all 6 psychiatric disorders. CONCLUSIONS AND RELEVANCE: In this study, shared neurobiologic processes were associated with differences in cortical thickness across multiple psychiatric disorders. These processes implicate a common role of prenatal development and postnatal functioning of the cerebral cortex in these disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Espectro Autista/patologia , Transtorno Bipolar/patologia , Córtex Cerebral/patologia , Transtorno Depressivo Maior/patologia , Desenvolvimento Fetal/fisiologia , Expressão Gênica/fisiologia , Desenvolvimento Humano/fisiologia , Transtorno Obsessivo-Compulsivo/patologia , Esquizofrenia/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno Bipolar/diagnóstico por imagem , Estudos de Casos e Controles , Córtex Cerebral/citologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Criança , Pré-Escolar , Estudos de Coortes , Biologia Computacional , Transtorno Depressivo Maior/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Análise de Componente Principal , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
9.
eNeuro ; 7(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33234543

RESUMO

Alzheimer's disease (AD) starts decades before clinical symptoms appear. Low-glucose utilization in regions of the cerebral cortex marks early AD. To identify these regions, we conducted a voxel-wise meta-analysis of previous studies conducted with positron emission tomography that compared AD patients with healthy controls. The resulting map marks hypometabolism in the posterior cingulate, middle frontal, angular gyrus, and middle and inferior temporal regions. Using the Allen Human Brain Atlas, we identified genes that show spatial correlation across the cerebral cortex between their expression and this hypometabolism. Of the six brains in the Atlas, one demonstrated a strong spatial correlation between gene expression and hypometabolism. Previous neuropathological assessment of this brain from a 39-year-old male noted a neurofibrillary tangle in the entorhinal cortex. Using the transcriptomic data, we estimate lower proportions of neurons and more microglia in the hypometabolic regions when comparing this donor's brain with the other five donors. Within this single brain, signal recognition particle (SRP)-dependent cotranslational protein targeting genes, which encode primarily cytosolic ribosome proteins, are highly expressed in the hypometabolic regions. Analyses of human and mouse data show that expression of these genes increases progressively across AD-associated states of microglial activation. In addition, genes involved in cell killing, chronic inflammation, ubiquitination, tRNA aminoacylation, and vacuole sorting are associated with the hypometabolism map. These genes suggest disruption of the protein life cycle and neuroimmune activation. Taken together, our molecular characterization reveals a link to AD-associated hypometabolism that may be relevant to preclinical stages of AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Animais , Encéfalo/diagnóstico por imagem , Fluordesoxiglucose F18 , Humanos , Camundongos , Microglia , Proteínas Ribossômicas/genética , Transcriptoma
10.
Sci Rep ; 10(1): 11411, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651428

RESUMO

Anorexia nervosa is a complex eating disorder with genetic, metabolic, and psychosocial underpinnings. Using genome-wide methods, recent studies have associated many genes with the disorder. We characterized these genes by projecting them into reference transcriptomic atlases of the prenatal and adult human brain to determine where these genes are expressed in fine detail. We found that genes from an induced stem cell study of anorexia nervosa cases are expressed at higher levels in the lateral parabrachial nucleus. Although weaker, expression enrichment of the adult lateral parabrachial is also found with genes from independent genetic studies. Candidate causal genes from the largest genetic study of anorexia nervosa to date were enriched for expression in the arcuate nucleus of the hypothalamus. We also found an enrichment of anorexia nervosa associated genes in the adult and fetal raphe and ventral tegmental areas. Motivated by enrichment of these feeding circuits, we tested if these genes respond to fasting in mice hypothalami, which highlighted the differential expression of Rps26 and Dalrd3. This work improves our understanding of the neurobiology of anorexia nervosa by suggesting disturbances in subcortical appetitive circuits.


Assuntos
Anorexia Nervosa/genética , Perfilação da Expressão Gênica , Transcriptoma , Adulto , Animais , Encéfalo/metabolismo , Exoma , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Microglia/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Ribossômicas/genética , tRNA Metiltransferases/genética
11.
J Med Internet Res ; 22(5): e15371, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32401222

RESUMO

BACKGROUND: Mental illness affects a significant portion of the worldwide population. Online mental health forums can provide a supportive environment for those afflicted and also generate a large amount of data that can be mined to predict mental health states using machine learning methods. OBJECTIVE: This study aimed to benchmark multiple methods of text feature representation for social media posts and compare their downstream use with automated machine learning (AutoML) tools. We tested on datasets that contain posts labeled for perceived suicide risk or moderator attention in the context of self-harm. Specifically, we assessed the ability of the methods to prioritize posts that a moderator would identify for immediate response. METHODS: We used 1588 labeled posts from the Computational Linguistics and Clinical Psychology (CLPsych) 2017 shared task collected from the Reachout.com forum. Posts were represented using lexicon-based tools, including Valence Aware Dictionary and sEntiment Reasoner, Empath, and Linguistic Inquiry and Word Count, and also using pretrained artificial neural network models, including DeepMoji, Universal Sentence Encoder, and Generative Pretrained Transformer-1 (GPT-1). We used Tree-based Optimization Tool and Auto-Sklearn as AutoML tools to generate classifiers to triage the posts. RESULTS: The top-performing system used features derived from the GPT-1 model, which was fine-tuned on over 150,000 unlabeled posts from Reachout.com. Our top system had a macroaveraged F1 score of 0.572, providing a new state-of-the-art result on the CLPsych 2017 task. This was achieved without additional information from metadata or preceding posts. Error analyses revealed that this top system often misses expressions of hopelessness. In addition, we have presented visualizations that aid in the understanding of the learned classifiers. CONCLUSIONS: In this study, we found that transfer learning is an effective strategy for predicting risk with relatively little labeled data and noted that fine-tuning of pretrained language models provides further gains when large amounts of unlabeled text are available.


Assuntos
Saúde Mental/normas , Medição de Risco/normas , Mídias Sociais/normas , Humanos
12.
Front Neurol ; 11: 573095, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551947

RESUMO

By engaging angiotensin-converting enzyme 2 (ACE2 or Ace2), the novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invades host cells and affects many organs, including the brain. However, the distribution of ACE2 in the brain is still obscure. Here, we investigated the ACE2 expression in the brain by analyzing data from publicly available brain transcriptome databases. According to our spatial distribution analysis, ACE2 was relatively highly expressed in some brain locations, such as the choroid plexus and paraventricular nuclei of the thalamus. According to cell-type distribution analysis, nuclear expression of ACE2 was found in many neurons (both excitatory and inhibitory neurons) and some non-neuron cells (mainly astrocytes, oligodendrocytes, and endothelial cells) in the human middle temporal gyrus and posterior cingulate cortex. A few ACE2-expressing nuclei were found in a hippocampal dataset, and none were detected in the prefrontal cortex. Except for the additional high expression of Ace2 in the olfactory bulb areas for spatial distribution as well as in the pericytes and endothelial cells for cell-type distribution, the distribution of Ace2 in the mouse brain was similar to that in the human brain. Thus, our results reveal an outline of ACE2/Ace2 distribution in the human and mouse brains, which indicates that the brain infection of SARS-CoV-2 may be capable of inducing central nervous system symptoms in coronavirus disease 2019 (COVID-19) patients. Potential species differences should be considered when using mouse models to study the neurological effects of SARS-CoV-2 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA